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Abstract. A scheme is presented which allows for the computation of the t o p o l o & l  pressure 
and power spectra associated with equilibrium measures from B given time series. Its 
convergence properties are demonstrated on numerical data sets obtained from the Lozi and the 
Henon map. Numerical evidence for sharp peaks in the power spectrum of the non-hyperbolic 
phase is given and supported by estimates using periodic-orbit expansions. 

1. Introduction 

Chaos in nonlinear dynamical systems is a well known phenomenon nowadays. On a 
phenomenological level it is quite well understood and has been observed experimentally 
in a lot of systems. In sharp contrast to the detailed study of theoretical models there are 
only a few different approaches to analysing time series directly. The properties of chaotic 
motion favour the application of statistical methods which have the aim of studying the 
structure of the physical invariant distribution (SRB measure in mathematical terms). One 
type of method deals with fractal aspects of the invariant dishibution and uses generalized 
dimensions and singularity spectra for a quantitative description (e.g. [l-91 for experimental 
results). As these quantities contain information about the metric structure of the system 
this approach demands a phase-space reconstruction technique which is a field of intense 
research in its own right (e.g. [lo] and references therein). A different type of method deals 
with the correlation properties which are beyond the usuai double time correlation analysis. 
They are the subject of interest for this paper. There seems to be no general relationship 
between these two kinds of approaches. However, they yield the same information under 
special mathematical preconditions. 

From the theoretical point of view the investigation of local time averages and their 
statistical properties have been proven to be useful [Il-171 even in some experimental 
contexts [18]. The approach is widely equivalent to a thermostatic formulation of spin 
systemst and a lot of concepts have been carried over from ordinary statistical mechanics 
[19-211. The basic quantity of interest is given by the local average of some (observed) 
quantity ut .  It contains important information about the local structure of the dynamics. To 
be consistent with the notation in the literature the time series is assumed to be generated 
by some discrete dynamical system xn+l = T(x , )  and some phasespace observable u(x ) .  
But this assumption is not important for the subsequent discussions. The fluctuations of the 

t If a generating paxtition is available, the corresponding symbolic dynamics allows for an explicit consbuction 
of the spin system. 
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local average Un(x)  = 1;:; u(Tk(x))/n are most conveniently studied via the characteristic 
function 

1 
n-ca n @(q) = lim - In(exp(qnU,(x))) 

also termed the topological pressure in the mathematical literature. (. . .) denotes an average 
with respect to the (physical) invariant distribution which is assumed to be equivalent to a 
long-time average with respect to a typical time series 

The parameter q plays the important role of singling out the local structures. This can be 
easily understood by inspecting the derivative of the characteristic function, which reads 

The last equality states the well known fact [20,22] that the limit can be writtent as an 
average with respect to an invariant measure p9, usually called an equilibrium measure 
in the mathematical literature. Although this measure is in general not accessible, the 
expectation value (3) can be computed via a long-time average of the kind (2)  which 
contains an additional exponential weight factor. Different invariant measures that mean 
different subsets of the attractor are singled out depending on the observable u ( x )  and the 
parameter q. They can be investigated by the average (3). Properties which are related 
to phase-space regions that are rarely visited by typical trajectories can be studied in a 
systematic way. In this sense, the local properties of the system can be investigated. 

The quantities (1) and (3) only contain some averaged information about the local prop- 
erties. Even this is an important feature, as singular local structures show up in phase 
transitions [17,23-271. Qualitatively different kinds of the dynamics can be detected by 
this approach. Nevertheless, a more detailed analysis is desirable. For this reason the inves- 
tigation of time correlations via correlation functions and power spectra is meaningful [28]: 

C,(k) = lim - ~(u(TjiK(x))u(T'(x))  exp(qncl,(x)))/(ex~(snU,(x))) 
n-I 

w m n .  ,=O 

= &(x))4x)dpq 
J 

(4) 

From the theoretical point of view the quantities (1) and (4) have proven to be a useful tool 
in understanding the dynamics of nonlinear chaotic systems on a detailed level [29-331. It 
is obvious that they reduce to ordinary statistical averages (SRB averages) in the case q = 0, 
because the exponential weight factor vanishes. This property reflects the fact that the corre- 
sponding equilibrium measure p9=o reduces to the Sinai-Ruelle-Bowen measure. Ordinary 
averages usually contain many different statistical aspects of the system under consideration, 
e.g. the structure of periodic orbits and non-hyperbolic points determine the shape of the 

t On a mathematically rigorous level the relation is proven for hyperbolic or expanding systems. 
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Figure 1. Dependence of the derivative of the topological pressure on the local-time marse 
graining n for the Henon map (a = 1.4, b = 0.3) obtained from a finite ensemble of size 
N = 3 x 10'. The local expansion rate is chosen 3s observable ~ ( x ) .  

power spectra in a complicated way 1341. One possibility to shed some light on the intricate 
structure of the invariant distribution without making a phase-space reconstruction or hav- 
ing knowledge of the actual dynamical equations is the investigation of the q-dependence 
of the thermodynamic quantities (1) and (4). I n  particular, singular local structures which 
violate the uniform hyperbolicity in chaotic systems, e.g. tangency points of local stable 
and unstable manifolds in dissipative systems or cantori in Hamiltonian dynamics, show up 
with non-analytic behaviour which are usually called phase transitions. 

An application of (1),(3) and (4) to (experimental) time series seems to be 
straightforward. But the finite size N of the available ensemble poses some constraint on the 
length n of the local-time coarse graining. If the latter quantity is chosen to be too large, the 
exponential weight factor in expressions like (3) approaches, for almost all initial conditions, 
the asymptotic form exp(qn(u)) and cancels in the numerator and denominator. Hence, the 
quantity (u)(q) tends towards the ordinary long-time average (U)@ = 0). As an example, 
figure 1 shows the n-dependence of the average (3) obtained from a numerically generated 
time series of length N = 3 x 10' of the Henon map. If n is chosen considerably larger 
than -.lo, the convergency towards the ordinary long-time average is clearly observed. 
This tendency reflects the fact that an ensemble of size N cannot capture the important 
correlations of the local averages U,(X) if the time coarse graining is chosen too large. 
With the help of a generating partition of the dynamical system an estimate like N 2 ec" 
can be derived to ensure that the limits N + 00 and n + CO are obtained in the correct way. 

On the other hand, the computation of correlation functions and power spectra (4) 
requires large n values, especially if the long-time, low-frequency behaviour has to be 
resolved. Furthermore, spectra obtained from low n values are rather noisy if no ensemble 
average is performed (cf figures 3 and 5). 

These two competitive effects cause some problems and may yield misleading results 
if the thermodynamic quantities (1) and (4) are calculated directly [35,36]. Methods are 
required to infer the limit from the low-n behaviour. Such a method has been introduced on 
a formal level in terms of a continued-fraction expansion for the quantity (1)  [37,38]. But 
its practical convergence behaviour has not been discussed except for model systems. On 
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the other hand, it has been observed that spurious solutions in such a kind of expansion may 
arise [39,40]. I want to analyse these methods from the point of view of their convergence 
properties. Section 2 revicws the approach, explains the origin of the spurious solutions, 
and gives simple prescriptions for their treatment. The scheme is tested on some time 
series obtained from numerical solutions of simple maps and the convergence behaviour is 
demonstrated. Similar ideas are then developed and tested for the computation of the power 
spectrum (4) from the short-time behaviour of the correlation function. As a by-product, 
some results on the time correlations in the non-hyperbolic phase of the Henon map are 
obtained. Finally, the results which have been computed via numerical simulations are 
checked from a theoretical viewpoint by a periodic-orbit expansion. This approach sheds 
some more light on the interpretation of the thermodynamic quantities (4). 

2. Continued-fraction expansion for the topological pressure 

Although the continued-fraction expansion for the quantity (1) is well known [37,38] its 
properties are not discussed in the literature. To keep the presentation self-contained let me 
review briefly the main ideas of the expansion. The characteristic function is determined 
by the exponential growth rate of the averages 

K ( q )  = (exp(qnMx))).  (5 )  
It is the goal of the following considerations to extract this rate from the behaviour at low 
n values. The quantities (5) are related to the moments of the transfer operator [41,42] 

(6) ( 'Hgh)(x)  = / 6 ( x  - I"(?)) eq"@)h(y) dy 

via 

K ( q )  = /((WJ"p.)(x)dx. (7) 

Here p* denotes the invariant density. Obviously the logarithm of the largest eigenvalue Aio) 
of the operator (6) yields the characteristic function (l), whereas the remaining part of the 
spectrum determines the correlation function and the power spectrum (4) [28]. To evaluate 
the eigenvalues of the transfer operator a projection-operator technique can be applied to 
its resolvent (cf appendix A). This approach leads to the matrix element 

The eigenvalues are determined by the poles of this expression. The M x M matrices x 
and w are given by 

MOW .. , M M - I W  Ml (d  ... M A ? )  

i ) (9) 1 - = (  M d q )  ... M Z M - I k )  

x=( I 
MM-I(q )  , , . MZM-Z(4) 

and the index in (8) denotes the upper-left matrix element. The memory matrix r(z) 
has only one non-vanishing element in the lower-right comer and is of no interest in the 
subsequent discussion. It should be mentioned that this matrix element vanishes if the 
transfer operator admits an M-dimensional invariant subspace which contains the invariant 
density (cf appendix A). This condition holds especially for the case of piecewise linear one- 
dimensional maps 1431. Expression (8) can be cast into the form of a continued fraction 
expansion of order M if the memory matrix is neglected. Its coefficients are given by 
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algebraic expressions in the moments (5) and can be computed from a time series without 
making any reference to transfer operators. In fact, the continued-fraction expansion can 
be derived formally without recourse to transfer operators [37]. In view of the previous 
remark the expansion can be interpreted as an approximation.of the full dynamical system 
by a piecewise linear one which is a special case of an approximation by Markov models. 

We are interested in the poles of the continued fraction of order M which yield an 
approximation for the pressure. They are determined by the algebraic equation 

0 = det(xz - w )  = detw 

-det [ : 1.  z MZ(q)-MI(q)Ml(q) ... M M ( q ) - M l ( q ) M M - l ( q )  
z2 M3G7) - MZ(q)MI(q) . . . MM+l(q) - MZ(4)MM-I (q) 

z M  MM-l(q)  - M M ( q ) M l ( q )  ... MZIM-I(q)-MM(q)MM-l(q) 
(10) 

Equation (10) can be cast into the form of a polynomial 

In view of the special structure of the second determinant in (10) the coefficients Ck obey 
the following set of linear equations: 

They determine the coefficients up to some unimportant common factor. As long as the 
matrix x is invertible, relation (10) is equivalent to (11) and (12). They define~a set of 
equations to determine the pressure. 

However, there arises a problem due to spurious poles of the continued fraction 
expansion. They are related to the fact that the matrices (9) may become non-inverrible if 
the order M of the expansion is increased. Hence, these solutions are not related to the 
convergence behaviour of the continued fraction, which is well understood [44] but to a 
singular behaviour of its coefficients. To make this statement explicit let us for the moment 
consider a system whose transfer operator admits the above-mentioned invariant subspace 
of order MO, e.g. a piecewise linear one-dimensional map. On this subspace the operator 
obeys its characteristic equation, which is in fact a polynomial of degree MO 

. 

Owing to (7) we obtain exact linear relations between the moments (5 )  

which cause the matrices (9) to become non-invertible in the case M t MO. As a 
consequence, the general solution of (12) reads 

(CO, . . . , CY) = ao(do, . . . , d ~ ~ ,  0, . . . , 0) + (YI (0, do, . . . , dMo, 0, . . . , 0) + . . 
+ ~ M - M ~ ( @  . . . ,o, do,. . . , dMo) (15) 
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by taking the relations (14) into account. The coefficients Qzk are as yet undetermined. The 
polynomial (1 1) which determines the pressure results in 

The first factor yields the exact eigenvalues whereas the second tem is as yet undetermined. 
If (14) holds exactly the continued fraction expansion (10) terminates at order M = MO 

and generates the exact eigenvalues. But even for piecewise linear dynamical systems 
the numerically generated moments Mym@) will contain small numerical and statistical 
errors 6M,(q) which denote the deviation from the unknown exact value M,,(q) = 
Mp"'(9) - BM,(q). They prevent (14) from being valid. As a consequence, the matrices 
(9) are invertible in the generic case and (12) admits a solution cym which is unique up to 
a common factor. Inspecting the result (15) the coefficients cym read 
(cr"', . . . , c;") =arm(&, . . . , dM0, 0, . . . , 0) +aym(0, do,. . . , dM,, 0,. . . , 0) +.. I 

+ 0 1 ~ ? ' ~ ~ ( 0 , .  . . ,O, do, .  . . g  dM") + (8~0,. . ., J C M )  (17) 
where the contributions 6 c k  are of the order of the statistical and numerical errors. The 
coefficients aym have finite values and are determined by the perturbations SM,(q) in a 
complicated way. We end up with the result (16) if we neglect the terms of order 6M,(q). 
The second factor yields spurious poles. 

The arguments given above, for piecewise linear maps, can also be applied to a general 
dynamical system. In this case, an invariant subspace which has the above-mentioned 
properties is not likely to exist. Hence (14) ceases to be valid. But the moments (7) are 
mainly determined by the eigenvalues with large absolute values. Therefore they depend 
mainly upon the leading, say MO, eigenvalues up to some small contribution 6M,(9). The 
reasoning of the preceding paragraph can be applied to this situation. Again spurious 
solutions emerge due to statistical and numerical errors for large orders of the expansion. 

Having clarified the origin of the spurious solutions, several svategies can be developed 
to detect the true ones. One approach which has been used in [40] investigates the poles 
by switching the parameter 9 adiabatically. This strategy requires the evaluation of (11) 
and (12) for a large set of q values:~ A different and more dx&t approach uses the fact 
that the spurious solutions depend sensitively on small perturbations which are added to 
the moments. Equations (11) and (12) are evaluated several times using moments which 
contain a small additive random number. The true solutions are fixed by the requirement 
that they vary in a smooth way. This criterion works well in all the computations that have 
been performed. 

To test the above-mentioned algorithm numerical calculations on discrete dynamical 
systems X,+I = T(x,,) have been performed. From a time series of length N the moments 
have been computed and the characteristic function evaluated. Special attention has been 
paid to the frequently used hyperbolic Lozi map and the non-hyperbolic Henon map 

(1) 

(18) x ~ + ~  (1) 

%+I X,+I - x n  

1 - alx!I)[ + bx,Z' = 1 -a ( x , ! " ) ~  + bxAZ) 
(2) = xAl) (2) - ( I ) ,  

The local expansion rate h(x) is chosen as the observable u ( x )  because it is of special 
importance for the structure of the invariant distribution and is frequently discussed in the 
literature [19,25,45,46]. As far as the simulations show, the applicability of the algorithm 
does not depend on this special choice. h(x) determines the rate of local expansion of nearby 
phase-space points. It can easily be computed by applying the linearized map D T ( x )  to unit 
vectors ex via exp(A(x,,))e.+l = DT(x.)e, [29]. It is worth mentioning that this quantity 
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Table 1. Topological presure of the Lozi map at panmeter values 0 = 1.7. b = 0.5 obtained 
fmm a time series of length N = los. Od denotes the continued-fnction result of order M, 
%.-I the result of the direct computation by choosing n = 2 M  - I ,  and A the determinant of 
the truncated m a i x  representation of the transfer operator. The 1st column contains reference 
values obtained for N = 9.5 x IOR and n = 40. 

~~~ 

M = 2  M = 3  M = 4  M = 5  

y = - 1  

y =  I 

q = 2  

y = 3  

-1.1100 
- 1.1952 

0.11 x IO"' 
-0.7920 
-0.8381 

-0.4306 
-0,4432 

0 . 1 6 ~  

0.5035 
0.4945 

0.56 x IO-"' 

0.15 x lo-"[ 
1.0602 
1.0338 
0.55 x 10-"1 

1.6501 
1.6070 
0.11 x IOU] 

-1.1105 
-1.1620 

-0.1952 
-0.8216 

-0.13 10-"3 

-0.13 10-03 

-0.4335 
-0.4392 
-0.19 x IO-"' 

0,4974 
0.4967 

-0.34 x 10-1" 

1.0352 
1.0392 

1.5908 
1.6145 

-0.47 x 10-']3 

-0.18 x IO-R2 

- 1.0947 
-1.1433 
-0.27 x 1 O-05 

-0.7858 
-0.8125 
-0.44 x IO-'16 
-0.4299 
-0.4372 
-0.11 x 10-07 

04995 
0.4972 

-0.22 x lo-'" 
1.0452 
1.0401 

-0.15 x 10-05 

1.6222 
1.6154 

-0.14 x IOAM 

-1.0941 -1.1075 
-1.1321 
-0.14 x 

-0.7855~ -0.7948 
-0.8065 
-0.83 x IO-"' 
-0.4289 -0.4339 
-0.4358 
-0.78 x 

. 0.4978 
0.5001 0.4998 

0.24 x IO-" 
1.0435 1.0456 
1.0417 

-0.62 x 

1.6229 ~ 1.6228 
1.6174 

-0.33 x IO-" 

has nothing to do with the eigenvalues of DT because the local unstable directions et 
contain correlations of the time series in a complicated way [47]. 

Table 1 summarizes typical results obtained for the Lozi map with parameter values 
a = 1.7. b = 0.5 and a moderate ensemble size of N = IO'. The values of the 
topological pressure obtained from the continued-fraction expansion Qct(q) are displayed 
for increasing order of the expansion. They are compared with the value QzM- l (q )  := 
In M z M - ~  ( q ) / ( 2 M  - 1) which corresponds to the highest moment that enters the expansion. 
Furthermore, the last column contains results which have been obtained from a huge 
ensemble (N = 9.5 x lo8, It = 40). They serve as reference values. If we estimate the size 
of the statistical errors roughly as - N-' lz, one recognizes that the expansion converges 
even for small orders M - 3. However, the difference between the expansion and the 
direct simulation Q2,+-I(q) is small except for negative c j  values (q = -3) where the latter 
converge rather slowly. Due to the hyperbolic structure of the Lozi map, an approximation 
of the dynamics by a few relevant eigenvalues--that means an approximation of the transfer 
operator by a low-dimensional matrix-is sufficient. This causes the rapid convergence of 
the expansion. One can support this argument by inspecting the normalized determinant 
of the matrix (9) A := exp[-(M - 1)(M - 2)Q2,+-l(q)]detxt. It indicates the degree of 
linear independence among the quantities (5) and is therefore a measure of to what extent the 
relation (13) or (14) is satisfied. The strong decrease of this quantity with the order of the 
approximation indicates that the transfer operator admits approximately a three-dimensional 
invariant subspace in the q-range investigated. Higher-order expansions induce spurious 

t The normalization is necessary to compensate for the exponential dependence of the matrix elements on the row 
and column indices. 
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Table 2. Topological pressure of the Henon map at parameter values a = 1.4, b = 0.3 obtained 
from a time series of length N = IOs. denotes the continued-fraction result of order M. 
aw-1 the result of the direct computation by choosing n = ZM - I ,  ilnd A the determinant of 
the truncated mnuix representation of the transfer operator. The last column contains reference 
values obtained for N = 9.5 x IO8 and n = 25. 

M = 2  M = 3  M = 4  M = 5  

y = -0.2 @&) -0.0781 -0.0807 -0.0807 -0.0808 -0.0806 
0 2 ~ - 1 ( y )  -0.0789 -0.0800 -0.0801 -0.0803 
A 0.14 x IO-('* -0.20 x IO@ -0.34 x lo-'' 0.35 x IO-" 

y = -0.4 -0,1420 -0.1534 -0.1531 -0.1536 -0.1527 
-0.1450 -0.1500 -0.1504 -0.1514 

0.82 x -0.39 x IO@ -0.46 x lo-" 0.23 x 

y = -0.6 -0.1857 -0.2125 -0.2118 -0.2134 -0.2119 
-0,1922 -0.2046 -0.2053 -0.2087 

0.26 x IO-"' -0.24 x -0.74 x IO'" 0.13 x 

-0.2105 -0.2317 -0.2324 -0.2418 
0.62 x IO-"' -0.86 x -0.11 x IO-M 0.16 x 

-0.1858 -0.2022 -0.2040 -0.2324 

y = -0.8 -0.1991 -0.2417 -0.2417 -02435 -0,2509 

q = - l  -0.1663 -0.2053 -0.2053 -0.2054 -0,2585 

0.12 x 10'" -0.19 x IO-"' -0.41 x lo-" 0.10 x IO-"' 
q = - 1 . 2  -0.0674 -0.0852 -0.0348 -0.0799 -0.2307 

-0.1035 -0.0715 -0.0920 -0.1661 
0.21 x 10'X) -0.22 x lo-"' -0.11 x lo-"' 0.25 x 10'0' 

solutions which are suppressed by the above-mentioned prescription. 
In the presence of phasetransition points further difficulties arise because of 

degeneracies in the spectrum of the transfer operator. As long as the transition is caused 
by a small number of eigenvalues [30,31] the continued-fraction expansion converges well. 
But the situation becomes more complicated for transitions in which a continuous part 
of the spectrum is involved. To discuss this complicated situation the Henon map has 
been analysed. It is well known that this system admits at standard parameter values 
a = 1.4, b = 0.3 non-hyperbolic points which produce a phase transition in the pressure 
at q Y -1 [46]. Table 2 summarizes typical results in the vicinity of the phase-transition 
point. They have been obtained from an ensemble of size N = IOs. In the hyperbolic 
phase q > -1 the properties of the expansion are comparable to the Lozi map. If the 
phase-transition point is approached, the increase of the quantity A signals that an increasing 
number of eigenvalues enter the evaluation. This observation seems to be in accordance 
with the assumption that the phase transition is caused by a continuous part of the spectrum 
[22,25,26,33]. We will dwell on this effect in the next sections. All values are compared 
with reference values obtained from a huge ensemble ( N  = 9.5 x IO8, n = 25). The 
agreement fails to be quantitative in the non-hyperbolic phase. This behaviour is not only 
attributed to the convergence properties of the expansion but also to the accuracy of the 
reference values (cf figure 1 and the remarks made in the introduction). 

Summarizing the findings it has been demonstrated that the pressure can be efficiently 
computed via (1 1) and (12) even for ensembles of moderate size, that spurious solutions can 
be suppressed successfully, and that a quantitative measure for the convergence properties 
can be given. But near complicated phase-transition points the quantitative values fail to 
converge accurately. 
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3. Power spectra from correlation functions 

The direct computation of the power spectrum (4) faces several difficulties. To perform 
the limit n + 00 accurately, the local-time coarse graining n has to be chosen sufficiently 
large. As this value also determines the range of the Fourier transform, a small value causes 
tremendous oscillations of the spectrum (cf figure 3). Alternatively, the spectrum can be 
computed via the Wiener-Khinchin theorem [28] 

m 

k=-m 

To avoid a strongly oscillating power spectrum, the long-time behaviour of the correlations 
has to be taken into account.. That means that the summation has to be truncated at 
sufficiently large k values. But for the calculation of the corresponding correlation function 
(4) a constraint like k n has to be imposed. Therefore, a direct calculation of the spectrum 
requires sufficiently large n values which, in view of the discussion of the preceding section, 
demands a huge ensemble sizet. To overcome this difficulty, a well known continued- 
fraction expansion can be applied for the evaluation of the power spectrum [48,49]. To 
keep the presentation self-contained, its derivation in the present context is sketched in 
appendix A. The main idea of the expansion is quite simple. To truncate the series (19) at 
low order the correlation function is approximated by exponentially decaying functions. By a 
resummation of these expressions the oscillating contributions are avoided and the spectrum 
is approximated by a rational function. It seems plausible that this approach works well at 
least in hyperbolic systems which admit a corresponding spectral structure [50,51]. 

To avoid the S singularity of the spectrum at o = 0 let us start with the considerations 
from the correlation function 

:= C,(k) - ( U ) ' ( q )  (20) 
which decays to zero under some mixing assumption. In terms of this quantity the spectrum 
can be written as (cf equation (8)) 

using the abbreviations 

1 .  e,(O) . .  . ?(,(M - 1)  ?,(l) ... ?,(M) 

Cq(M - 1) . . . cq , (2M - 2) t , ( M )  ... eq , (2M - ~ l )  

% = (  ; ) .=( i 

(22) 
Again, the memory matrix "(z)  has only one non-vanishing matrix element in the lower- 
right comer. From the discussion in the preceding section it is obvious that the expression 
(21) can be cast into the form of a continued fraction of order M if the memory matrix is 
neglected. We also know that this expression may contain spurious poles if the order M is 
chosen too large. As a consequence, the poles of the original spectrum can be obtained from 
the expression (21) only if the procedure described in section 2 is applied. On the other 
hand, the actual shape of the spectrum seems not to be modified by the spurious solutions 
in the general case, because these poles are typically at a large distance from the unit circle 
on which the expression (21) is evaluated. 

t As mentioned in the introduction, a large temporally coarse graining n >> In N will lead to the ordinary staristical 
avenge fq.o(o). 
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As typical examples, we again treat data sets which have been obtained from the Lozi and 
Henon maps, respectively (cf equation (18)). To be consistent with the previous discussion 
let us again choose the local expansion rate as the observable U@). The principal features 
do not depend on this choice. Taking a time series that means an ensemble of size N ,  
the correlation function (4) and the expectation value (3) have been computed directly for 
several q values. Thereafter the data have been converted to the power spectrum with the 
help of (21) and (22) by neglecting the memory matrix. 

0.03 I 

0.02 

0.01 

0 

0 3 6 9 12 15 
k 

Figure 2. Correlation function of the Lozi map (n = 1.7, b = 0.5) obtained from an ensemble 
of size N = 1.1 x 10' and n = 30. 

Figure 2 shows typical results for the correlation function of the Lozi map. Due to its 
hyperbolic structure the correlations decay exponentially in the whole q region. The power 
spectra obtained via the above-mentioned approach (cf figure 3) converge rapidly even 
for moderate orders of the expansion. This property has to be compared with the direct 
evaluation of expression (4), which is also displayed. The latter shows a noisy behaviour 
which shadows the actual form of the spectrum. For positive q values a maximum in the 
spectrum and an oscillatory decay of the correlation function can be observed, respectively. 
It is so weak that it cannot be attributed to some definite periodic orbit of the dynamical 
system. The nearly Lorentzian shape for negative q values relies on some symmetry property 
of the chosen observable. We will come back to this effect in the next section. The method 
converges well in the case of hyperbolic systems and allows for an accurate computation 
of power spectra. 

The same procedure has been applied to the Henon map, especially in the vicinity of 
the phase-transition point. Figure 4 summarizes some results on the correlation function. 
It decays almost exponentially in the hyperbolic phase. Approaching the phase-transition 
point, a slowing down can be observed. It should be mentioned, however, that the statistical 
ensemble of size N contains only a few members which represent the non-hyperbolic phaset. 
As a consequence, the statistical errors grow and the correlation function becomes noisy 
if the phase-transition point is approached. In particular, the data do not allow one to 
decide whether the correlation function decays in the non-hyperbolic phase. The power 
spectra obtained from (21) have been displayed in figure 5. The method converges well 

t This property is the reason for the behaviour which has already been discussed in the introduction (cf figure I ) .  
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Figure 3. Power specmm of the Lozi map obtained via a continued-fmtion expansion of order 
M for several q values, (a) y = -2, (b) q = 0, (c) q = 2. The chain curve shows the direct 
calculation using (4) (N = 5 x IOs, n = 100). In all cases the expansions of order M = 9 and 
M = 12 coincide up to the line thickness. 
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Figure 4. Correlation function of the Henon map (a = 1.4. b = 0.3) obtained from an ensemble 
of size N 9.8 x IO' and n = 40. 

in the hyperbolic phase, indicating that the spectrum of the transfer operator consists of 
only a few relevant eigenvalues. Approaching the phase-transition point, the order of the 
expansion has to be increased to achieve convergence. This property is consistent with the 
assumption mentioned in the preceding section that the transition is caused by a continuous 
part of the spectrum. The spectrum, however, develops several sharp peaks, indicating the 
importance of periodic orbits of period 13 for the non-hyperbolic phase 1521. But near the 
pbasetransition point q = -1, and especially in the non-hyperbolic phase, the method fails 
to produce reasonable quantitative results because of the above-mentioned noisy behaviour 
of the correlation functions. 

As could be expected, the approach works well in hyperbolic situations which can be 
described approximately by a transfer operator with a discrete spectrum and few relevant 
eigenvalues. But also in non-hyperbolic cases, especially in intermittent situations, the main 
qualitative features are reproduced. 

4. Periodic-orbit expansion 

Although an expansion of statistical quantities in terms of periodic orbits may be difficult 
to apply to experimental data sets, because the extraction of sufficiently many periodic 
cycles of a certain length requires huge data sets, it is a convenient method to investigate 
the properties of model systems by means of a theoretical approach. It is the objective of 
this section to supplement the results of the previous sections and to shed some more light 
on the interpretation of the correlation functions and power spectra. As there is a lot of 
literature on this topic (e.g. [53,54]) the method is only briefly outlined. 

The main quantity of interest is a so-called zeta function (see appendix B for a derivation) 
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Figure 5. Power specmm of the Henon map obtained via a continued-fmtion expansion of 
order M for seveml q values, (0) q = -0.5. (b) q = 0. (c) q = I .  The chain curve shows the 
direct calculation using (4) (N = IO5. n = 100). 
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Here Cp,nnln denotes the summation over all prime cycles whose period divides n and 
xp stands for an arbitrary phase-space point contained in this cycle. Its zeros z(”), 
z(O) < g [d2)1 < . . . give the inverse eigenvalues of the transfer operator (6) and 
determine the pressure and the resonances of the power spectrum (4) via the relations (cf 
1281) 

Instead of using a Ruelle-type zeta function, which is known to be analytic in a bounded 
domain in z for hyperbolic systemst [201 I use here a Selberg-type product [54] which 
is an entire function under the same.conditions. This analytic property allows for a 
Taylor-series expansion of the quantity (23). From a finite,truncation-that means from 
a polynomial-the zeros and hence the pressure and the first resonances can be determined 
accurately [56]. The fact that only short prime cycles enter this expansion, as well as its 
good convergence properties, at least in the hyperbolic case, make the quantity useful for 
theoretical investigationst. 

Furthermore, phase-space averages with respect to equilibrium measures fiq of 
‘arbitrary’ observables f ( x )  can be obtained from expression (23) by taking a formal 
derivative (appendix B) 

Equation (25) has to be evaluated at the smallest zero of the zeta function. But, as the last 
factors on both sides contain a pole which is cancelled by the zeta function, the limit z + z(O) 
has to be considered. The second reason for keeping the common factors on both sides is 
not to destroy the analytic structure of the expression. As (25) is obtained directly from the 
derivative of an entire function, both sides admit a Taylor-series representation. Hence (25) 
can again be evaluated by expanding both sides in powers of z and it has good convergence 
properties§. By choosing f ( x )  = u(T’(x))u(x),  an expansion of the full correlation 
function (4) in terms of periodic orbits is obtained. Inspecting the right-hand side of (25), 
this expression is mainly determined by the diverse prime-cycle correlation functions. 

Periodic orbits for the Lozi and the Henon map can be obtained easily. For reference 
with related work, table 3 contains the number of prime cycles that have been obtained up 
to period 18 and 19, respectively. By,,evaluating expression (25), the topological pressure, 
its derivative and the correlation function are computed from the prime-cycle data. Typical 
results for the correlation function are summarized in figures 6 and I. As long as the 
argument of the correlation function does not exceed the order of the prime-cycle expansion, 
i.e. for the maximal period of the incorporated prime cycle, a reasonable convergence is 
observed for the hyperbolic Lozi map in the whole q region. But it should be mentioned that 
the correlation function obtained from the expansion is nearly periodic with the order of the 

t For the special case of a topological zeta function the meromorphic property CM be proven 1551. 
$ I do not intend to go into the details of the evaluation. It should be stressed, however, that the expansion CM 

be considerably improved by using information about the symbolic dynamics or the symmetries of the system 
153,571. 
3 As the observable f ( x )  is rather arbitmry, one has obtained a representation of equilibrium measures in terms 
of periodic orbits which, to the authors best knowledge. cannot be found in the litenture. 
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Table 3. Number OF prime cycles, dependening on their period np, For the Lozi map (U = 1.7, 
b = 0.5) and the Henon map (U = I .4, b = 0.3). 

n p L 2 3 4 5  6 7 8 9 I O  

LZ I I O  1 0  4 4 7 1 0 1 2  
H n I I O I  0 2 4 7 6 1 0  

np 11 12 13 14 15 16 17 18 19 
Lz 18 32 56 78 122 ~ 180 282 439 - 
Hn 14 19 32 44 72 102 165 228 346 
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Figure 6. Correlation function of the Lozi map obtained from a prime-cycle expansion of order 
p .  For comparison the result of the direct calculation (cF figure 2) is shown as a full curve. 

expansion. Inspecting the expression (25). this observation is not surprising as the prime- 
cycle expansion approximates the~equilibrium measore by 6 peaks with appropriate weights. 
For the Henon map the results are similar in the hyperbolic phase (cf figure 7). But as one 
approaches the phase-transition point the expansion fails to converge sufficiently rapidly. 
Only qualitative features are reproduced, particularly the apparent degree of periodicity of 
the correlation function. 
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Figure 7. Correlation function of the Henon map obtained from a primesycle expansion of 
order p .  For comparison, the result of the direct calculation (cf figure 4) is shown as n full ewe.  

The results are to be supplemented with an analysis of the spectrum of the transfer 
qperator using the zeta function (23). Approximate expressions for the largest eigenvalues 
can be obtained via the zeros of a truncated Taylor-series expansion of (23). Figures 8 and 
9 show the results obtained in this way for two adjacent orders of the expansion. The zero 
with the lowest absolute value which determines the pressure shows the best convergence. 
The convergence properties decrease if one considers larger values. 

In the case of the Lozi map (cf figure 8) the high-q region is characterized by eigenvalues 
reflecting roughly a period-8 behaviour. This part of the spectrum comes from highly 
unstable prime cycles of period 7 and 8 which are favoured by the large q values. The 
direct computation of the correlation functions (cf figures 2 and 6) reflects this fact too. The 
spectrum in the low-q region is mainly determined by a negative eigenvalue with absolute 
value slightly smaller than the largest one. This behaviour is induced by a weakly unstable 
period-2 prime cycle. The correlation function does not show the corresponding oscillating 
behaviour as the observable, i.e. the local expansion rate A(x)  is not 2-periodic on this 
orbit. It takes the same value on both phase-space points. Due to this symmetry property 
the decay of the correlation function is governed by prime cycles of higher periodicity. 
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Figure S. Zeros of the zeta function for two orders p 
ofthe polynomial truncation for the Lozi map (a = 1.7, 
b = 0.5). The dotted circle indicates the absolute value 
of the smallest zero. 
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Figure 9. Zeros of the zeta function for two orders p of 
the polynomial Uuncation for the Henon mop (0 = 1.4. 
b = 0.3) in the hyperbolic (q = -1) and non-hyperbolic 
(9 = I )  phase. The dotted circle indicates the absolute 
value of the smallest zero. 

The properties of the Henon map in the hyperbolic phase are comparable to those of the 
Lozi map (cf figure 9). But, as the phase-transition point is approached, the smallest zero 
becomes degenerate with a circle of zeros emerging from a nearly stable period-I3 prime 
cycle which is known to mainly determine the phase transition. The corresponding features 
are clearly seen in the correlation function (cf figures 3 and 7). Due to this mechanism, 
the enhancement of the camelations in the non-hyperbolic phase can be understood. It 
remains, however, an open question whether the correlation function in this phase decays. 
A persistent oscillating part would indicate a loss of ergodicity and a decomposition of the 
equilibrium measure into different ergodic components. Such a behaviour typically occurs 
at phase transition points [201. It would be interesting to detect these components in the 
actual dynamical system. 

In contrast to the direct expansion of the correlation function in terms of periodic orbits, 
which works only for finite-time arguments, the determination of the low-order resonances, 
which means the long-time behaviour, from the Zeta function works quite well. On the 
other hand the method does not yield the residues and therefore the actual shape of the 
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correlation function. In this respect both approaches deal with different asymptotic cases 
and support the results obtained from the direct simulation. 

5. Conclusion 

Continued-fraction techniques are suitable for the calculation of thermodynamic quantities, 
at least if spurious solutions which arise out of approximately invariant subspaces of the 
transfer operator have been removed. The approach seems to converge well and estimates 
of the finitely truncated matrix representation of the transfer operator yield some qualitative 
features of its spectral structure. Although the evaluation of the pressure does not lead to a 
detailed description, some global properties like phase transitions can be detected. The com- 
putation of the corresponding power spectra may reveal a deeper insight into the local struc- 
ture of the underlying dynamics. The remaining unsolved problem concerns the choice of the 
observable U@). From the practical point of view the local expansion rate is inaccessible. 
But investigations on model systems support the conjecture that the detailed structure of the 
observable does not influence qualitative properties. Only the presence of higher-order phase 
transitions or some special local features of the dynamics may depend on the chosen func- 
tion [27,31,58]. Further work in this direction is necessary. Nevertheless, the application of 
the method for the evaluation of experimental data sets seems promising and is in progress. 
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Appendix A. 

The correlation function and the power spectrum (4) can be expressed in terms of the transfer 
operator (6) acting on a function spacet. Its dual space is considered as a measure space 
with elements (U] and (ulh) := jh (x)du .  In terms of the eigenelements [hio)) and (u$~)[ 
of the operator (6) corresponding to the largest (positive) eigenvalue the quantities of 
interest read [ZZ] 

t , ( k )  = ($)I S,u ( 'Hi/A$)k(  &U h:))) I,(OJ) = - t q ( O )  + J,(e'") + J,(e-'"). (Al) 

Here the abbreviations 8,u ( x )  := u ( x )  - (u)(q) and 

have been used. To derive the expression (21) a projection operator technique can be applied 
to (A2) (cf [38]). Starting from the 'observables' 121) := I8,uh$')) and (kl := ( u ~ ~ l S , u ,  
define a set of functions and measures by the recursion relations 

t The precise definition of the function space is a serious and in general unsolved problem. In the simple case of 
piecewise analytic expanding maps the space mnsisrs of piecewise analytic funcdons. 
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With these sets a projection operator 

P = c l & ) ~ % - 1 ) k l ~ i 4  
k l  

and its complement Q = 1 - P can be constructed. Applying the well known operator 
identity [49] 

- 1  

P = P  z-PLP-PLG! 1 U P ]  P [ Z - QLQ 
1 P- z-I: 

to the expression (A2) we obtain immediately (21) with 

If the transfer operator admits an MO-dimensional invariant subspace which contains the 
function 8,u(x)h?)(x) = & ( x )  then QX;& = 0 holds. Choosing M = MO, the 
expression (21) becomes exact with ;Y(z) = 0. As the observables 21 and have vanishing 
expectation value, (u$')lh) = 0, (cl Ihio)) = 0, the correlation function (20) decays and the 
6 peak of the power spectrum at w = 0 is suppressed. Otherwise this singularity would 
influence a finite-pole approximation. 

Appendix B. 

Consider the transfer operator 

('Ht;,<h)(x) = 1 S(x - T(y) )eq"(y)+' f (y )h(y)dy .  (B1) 
In the case E = 0 its eigenvalues coincide with those of expression (6). whereas the 
derivative of the logarithm of the largest eigenvalue with respect to E yields the expectation 
value (3) [ZO]. To analyse the spectrum of (Bl) the zeta function 

- .- .- det(1 -~?it;,,) 
Z's.Sz) 

1 

is a useful tool. Using the standard relations [53] 

the zeta function (BZ) can be cast into the form 
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Changing the summation over all fixed points of T" to a summation over all prime cycles in 
a standard way 1531 the equation determining the zeros of the zeta function and its derivative 
with rcspcct to E at E = 0 finally yields express ions  (23) and (25) by taking the relation 

into account. 
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